Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 91(8): fiv084, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26207045

RESUMO

The impact of temperature (0-80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple 'windows' within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, 'Bathyarchaeota') changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry.


Assuntos
Bactérias/metabolismo , Crescimento Quimioautotrófico/fisiologia , Euryarchaeota/metabolismo , Sedimentos Geológicos/microbiologia , Anaerobiose/fisiologia , Bactérias/genética , Euryarchaeota/genética , Eutrofização , Metano/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Temperatura
2.
PLoS One ; 8(7): e69074, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935928

RESUMO

Limited information is available on the impact of the NaOH treatment on table olive fermentations, and for this reason a polyphasic approach has been adopted here to investigate its effect on the fermentation dynamics and bacterial biodiversity. The microbial counts of the main groups involved in the transformation have not shown any differences, apart from a more prompt start of the fermentation when the olives were subjected to the NaOH treatment. The data produced by culture-independent analyses highlighted that the fermentation of table olives not treated with NaOH is the result of the coexistence of two different ecosystems: the surface of the olives and the brines. A sodium hydroxide treatment not only eliminates this difference, but also affects the bacterial ecology of the olives to a great extent. As proved by high-throughput sequencing, the fermentation of the olives not treated with NaOH was characterized by the presence of halophilic bacteria, which were substituted by Lactobacillus at the later stages of the fermentation, while enterobacteria were dominant when the olives were treated with sodium hydroxide. Higher biodiversity was found for Lactobacillus plantarum isolated during untreated fermentation. Different biotypes were found on the olive surface and in the brines. When the debittering process was carried out, a decrease in the number of L. plantarum biotypes were observed and those originating from the surface of the olive did not differentiate from the ones present in the brines.


Assuntos
Bactérias/crescimento & desenvolvimento , Biodiversidade , Olea/efeitos dos fármacos , Hidróxido de Sódio/farmacologia , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/classificação , DNA Bacteriano/genética , Ecossistema , Fermentação/efeitos dos fármacos , Microbiologia de Alimentos , Variação Genética , Concentração de Íons de Hidrogênio , Olea/metabolismo , Olea/microbiologia , Dinâmica Populacional , RNA Ribossômico 16S/genética , Sais , Análise de Sequência de DNA , Especificidade da Espécie
3.
Int J Food Microbiol ; 167(1): 29-43, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23791362

RESUMO

Culture independent methods first appeared in the food microbiology field at the end of the 90s and since then they have been applied extensively. These methods do not rely on cultivation and target nucleic acids (DNA and RNA) to identify and follow the changes that occur in the main populations present in a specific ecosystem. The method that has most often been used as a culture independent method in food microbiology is denaturing gradient gel electrophoresis (DGGE). The number of papers dealing with DGGE grew exponentially in the late nineties and, by analysing the studies available in the literature, it is possible to describe a trend in the subjects that have been investigated. DGGE was first used as a tool to monitor the ecology of fermented food, such as fermented sausage, cheese and sourdough, and later it also showed its potential in microbial spoilage process. In the last few years, the main application of DGGE has been to study fermented food from Asia, Africa and South America. The information collected using DGGE has made it possible to confirm the existing knowledge on food fermentation and spoilage. However, in some cases, new evidence that helps scientists to fully comprehend a specific microbial ecosystem has emerged. In this review, the roadmap of culture independent methods in food microbiology will be summarized, focusing on the DGGE technique. Examples of how this approach is useful to obtain a better understanding of microbial diversity are reported for several kinds of fermented food, such as fermented sausage, cheese and wine. The future of culture independent methods in food microbiology, with the increasing availability of next generation sequencing techniques, is also discussed.


Assuntos
Biodiversidade , Eletroforese em Gel de Gradiente Desnaturante , Fermentação , Microbiologia de Alimentos/métodos , Microbiota/fisiologia , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Humanos
4.
Microb Ecol ; 64(1): 171-86, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22349905

RESUMO

The prokaryotic community in Fe-As co-precipitation product from a groundwater storage tank in Bangladesh was investigated over a 5-year period to assess the diversity of the community and to infer biogeochemical mechanisms that may contribute to the formation and stabilisation of co-precipitation products and to Fe and As redox cycling. Partial 16S rRNA gene sequences from Bacteria and Archaea, functional markers (mcrA and dsrB) and iron-oxidising Gallionella-related 16S rRNA gene sequences were determined using denaturing gradient gel electrophoresis (DGGE). Additionally, a bacterial 16S rRNA gene library was also constructed from one representative sample. Biogeochemical characterization demonstrated that co-precipitation products consist of a mixture of inorganic minerals, mainly hydrous ferric oxides, intimately associated with organic matter of microbial origin that contribute to the chemical and physical stabilisation of a poorly ordered structure. DGGE analysis and polymerase chain reaction-cloning revealed that the diverse bacterial community structure in the co-precipitation product progressively stabilised with time resulting in a prevalence of methylotrophic Betaproteobacteria, while the archaeal community was less diverse and was dominated by members of the Euryarchaeota. Results show that Fe-As co-precipitation products provide a habitat characterised by anoxic/oxic niches that supports a phylogenetically and metabolically diverse group of prokaryotes involved in metal, sulphur and carbon cycling, supported by the presence of Gallionella-like iron-oxidizers, methanogens, methylotrophs, and sulphate reducers. However, no phylotypes known to be directly involved in As(V) respiration or As(III) oxidation were found.


Assuntos
Archaea/isolamento & purificação , Arsênio/química , Bactérias/isolamento & purificação , Água Subterrânea/microbiologia , Ferro/química , Archaea/classificação , Archaea/genética , Arsênio/metabolismo , Bactérias/classificação , Bactérias/genética , Bangladesh , DNA Arqueal/genética , DNA Bacteriano/genética , Água Subterrânea/química , Ferro/metabolismo , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
5.
FEMS Microbiol Ecol ; 77(2): 248-63, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21477007

RESUMO

The prokaryotic activity, diversity and culturability of diffusion-controlled Aarhus Bay sediments, including the sulphate-methane transition zone (SMTZ), were determined using a combination of geochemical, molecular (16S rRNA and mcrA genes) and cultivation techniques. The SMTZ had elevated sulphate reduction and anaerobic oxidation of methane, and enhanced cell numbers, but no active methanogenesis. The prokaryotic population was similar to that in other SMTZs, with Deltaproteobacteria, Gammaproteobacteria, JS1, Planctomycetes, Chloroflexi, ANME-1, MBG-D and MCG. Many of these groups were maintained in a heterotrophic (10 mM glucose, acetate), sediment slurry with periodic low sulphate and acetate additions (~2 mM). Other prokaryotes were also enriched including methanogens, Firmicutes, Bacteroidetes, Synergistetes and TM6. This slurry was then inoculated into a matrix of substrate and sulphate concentrations for further selective enrichment. The results demonstrated that important SMTZ bacteria can be maintained in a long-term, anaerobic culture under specific conditions. For example, JS1 grew in a mixed culture with acetate or acetate/glucose plus sulphate. Chloroflexi occurred in a mixed culture, including in the presence of acetate, which had previously not been shown to be a Chloroflexi subphylum I substrate, and was more dominant in a medium with seawater salt concentrations. In contrast, archaeal diversity was reduced and limited to the orders Methanosarcinales and Methanomicrobiales. These results provide information about the physiology of a range of SMTZ prokaryotes and shows that many can be maintained and enriched under heterotrophic conditions, including those with few or no cultivated representatives.


Assuntos
Biodiversidade , Metano/metabolismo , Água do Mar/microbiologia , Sulfatos/metabolismo , Microbiologia da Água , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Arqueal/genética , DNA Bacteriano/genética , Dinamarca , Biblioteca Gênica , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Técnicas Microbiológicas , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...